

GENERAC®

Owner's Manual
Automatic Transfer Switch

*Service Rated, 200 Amp, Single Phase, 240 VAC, 20–40 Circuit
Load Center With Pass-Through Lugs*

Register your Generac product at:
WWW.REGISTER.GENERAC.COM
1-888-9ACTIVATE
(1-888-922-8482)

SAVE THIS MANUAL FOR FUTURE REFERENCE

Model:	
Serial:	
Date Purchased:	

Model Number

RXGW20SHA3

 WARNING

CANCER AND REPRODUCTIVE HARM
www.p65warnings.ca.gov

(W000393)

Table of Contents

Section 1: Safety	
Introduction	5
Read This Manual Thoroughly	5
Safety Rules	5
Electrical Hazards	6
General Hazards	7
Section 2: General Information	
Introduction	9
Unpacking	9
Contents in Loose Parts Bag	9
Equipment Description	9
Transfer Switch Mechanism	9
Utility Service Circuit Breaker (if equipped)	10
Transfer Switch Data Decal	10
Transfer Switch Enclosure	10
Safe Use of Transfer Switch	10
Load Management Options	10
Smart A/C Module (SACM)	10
Smart Management Module (SMM) (sold separately)	10
Application Considerations	11
Section 3: Installation	
Introduction to Installation	13
Mounting the Enclosure	13
Opening the Enclosure	13
Installing Breakers	14
Installing Branch Circuit Conductors	14
Connecting Power Source and Generator	
Power Supply	14
Connecting Start Circuit Wires	15
Connecting SACM	16
Control of Air Conditioner Load	16
Typical SACM Connections	16
Auxiliary Contact	17
Fault Current Label	17
Section 4: Operation	
Functional Tests and Adjustments	19
Manual Operation	19
Close to Utility Source Side	19
Close to Generator Source Side	19
Return to Utility Source Side	20
Voltage Checks	20
Utility Voltage Checks	20
Generator Voltage Checks	20
Generator Tests Under Load	20
Checking Automatic Operation	21
Installation Summary	21
Shutting Generator Down While Under Load	21
Shutting Generator Down To Perform Maintenance	21
Testing the SACM	22
Testing the SMM	22
SACM Fuse Service	22
Section 5: Drawings and Diagrams	
Installation Drawing	23
Interconnection Drawing—Liquid-Cooled Engine Generator	24
Interconnection Drawing—Liquid-Cooled Engine Generator	25
Interconnection Drawing—Liquid-Cooled Engine Generator	26
Interconnection Drawing—Liquid-Cooled Engine Generator	27

This page intentionally left blank.

Section 1: Safety

Introduction

Thank you for purchasing a Generac Power Systems Inc. product. This unit has been designed to provide high performance, efficient operation, and years of use when maintained properly. This transfer switch is listed with ETL under the UL1008 standard.

Read This Manual Thoroughly

WARNING

Consult Manual. Read and understand manual completely before using product. Failure to completely understand manual and product could result in death or serious injury.

(W000100)

If any section of this manual is not understood, contact the nearest Independent Authorized Service Dealer (IASD) or Generac Customer Service at 1-888-436-3722 (1-888-GENERAC), or visit www.generac.com for starting, operating, and servicing procedures. The owner is responsible for proper maintenance and safe use of the unit.

SAVE THESE INSTRUCTIONS for future reference. This manual contains important instructions that must be followed during placement, operation, and maintenance of the unit and its components. Always supply this manual to any individual that will use this unit, and instruct them on how to correctly start, operate, and stop the unit in case of emergency.

Safety Rules

The manufacturer cannot anticipate every possible circumstance that might involve a hazard. The alerts in this manual, and on tags and decals affixed to the unit, are not all inclusive. If using a procedure, work method, or operating technique that the manufacturer does not specifically recommend, verify that it is safe for others and does not render the equipment unsafe.

Throughout this publication, and on tags and decals affixed to the unit, DANGER, WARNING, CAUTION, and NOTE blocks are used to alert personnel to special instructions about a particular operation that may be hazardous if performed incorrectly or carelessly. Observe them carefully. Alert definitions are as follows:

DANGER

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

(D000001)

WARNING

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

(W000002)

CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

(C000003)

NOTE: Notes contain additional information important to a procedure and will be found within the regular text of this manual.

These safety alerts cannot eliminate the hazards that they indicate. Common sense and strict compliance with the special instructions while performing the action or service are essential to preventing accidents.

Electrical Hazards

DANGER

Electrocution. High voltage is present at transfer switch and terminals. Contact with live terminals will result in death or serious injury.

(D000129)

DANGER

Electrocution. Water contact with a power source, if not avoided, will result in death or serious injury.

(D000104)

DANGER

Electrocution. In the event of electrical accident, immediately shut power OFF. Use non-conductive implements to free victim from live conductor. Apply first aid and get medical help. Failure to do so will result in death or serious injury.

(D000145)

DANGER

Electrical backfeed. Use only approved switchgear to isolate generator from the normal power source. Failure to do so will result in death, serious injury, and equipment damage.

(D000237)

DANGER

Electrocution, equipment and property damage. Handle transfer switches carefully when installing. Never install a damaged transfer switch. Doing so could result in death or serious injury, equipment and property damage.

(D000195)

DANGER

Electrocution. Turn utility supply OFF before working on utility connections of the transfer switch. Failure to do so will result in death or serious injury.

(D000123)

DANGER

Electrocution. Do not disable or modify the connection box door safety switch. Doing so will result in death or serious injury.

(D000157)

DANGER

Automatic start-up. Disconnect utility power and render unit inoperable before working on unit. Failure to do so will result in death or serious injury.

(D000191)

DANGER

Equipment Malfunction. Installing a dirty or damaged transfer switch will cause equipment malfunction and will result in death or serious injury.

(D000119)

WARNING

Electric Shock. Only a trained and licensed electrician should perform wiring and connections to unit. Failure to follow proper installation requirements could result in death, serious injury, and equipment or property damage.

(W000155)

CAUTION

Equipment damage. Verify all conductors are tightened to the factory specified torque value. Failure to do so could result in damage to the switch base.

(C000120)

CAUTION

Equipment damage. Perform functional tests in the exact order they are presented in the manual. Failure to do so could result in equipment damage.

(C000121)

CAUTION

Equipment damage. Verify that voltage and current are within specification before energizing this equipment. Exceeding rated voltage and current will damage the auxiliary contacts.

(C000134)

General Hazards

ADANGER

Electrical backfeed. Use only approved switchgear to isolate generator from the normal power source. Failure to do so will result in death, serious injury, and equipment damage.

(D000237)

ADANGER

Electrocution. High voltage is present at transfer switch and terminals. Contact with live terminals will result in death or serious injury.

(D000129)

ADANGER

Electrocution. Turn utility supply OFF before working on utility connections of the transfer switch. Failure to do so will result in death or serious injury.

(D000123)

ADANGER

Electrocution. Water contact with a power source, if not avoided, will result in death or serious injury.

(D000104)

ADANGER

Electrocution. Do not wear jewelry while working on this equipment. Doing so will result in death or serious injury.

(D000188)

ADANGER

Electrocution. Only authorized personnel should access transfer switch interior. Transfer switch doors should be kept closed and locked. Failure to do so will result in death or serious injury.

(D000213)

ADANGER

Automatic start-up. Disconnect utility power and render unit inoperable before working on unit. Failure to do so will result in death or serious injury.

(D000191)

ADANGER

Electrocution. In the event of electrical accident, immediately shut power OFF. Use non-conductive implements to free victim from live conductor. Apply first aid and get medical help. Failure to do so will result in death or serious injury.

(D000145)

AWARNING

Loss of life. This product is not intended to be used in a critical life support application. Failure to adhere to this warning could result in death or serious injury.

(W000209)

AWARNING

Equipment damage. This unit is not intended for use as a prime power source. It is intended for use as an intermediate power supply in the event of temporary power outage only. Doing so could result in death, serious injury, and equipment damage.

(W000247)

- Competent, qualified personnel should install, operate and service this equipment. Adhere strictly to local, state and national electrical and building codes. When using this equipment, comply with regulations established by the National Electrical Code (NEC), CSA Standard; the Occupational Safety and Health Administration (OSHA), or the local agency for workplace health and safety.
- If working on this equipment while standing on metal or concrete, place insulative mats over a dry wood platform. Work on this equipment only while standing on such insulative mats.
- Never work on this equipment while physically or mentally fatigued.
- Any voltage measurements should be performed with a meter that meets UL3111 safety standards, and meets or exceeds overvoltage class CAT III.

This page intentionally left blank.

Section 2: General Information

Introduction

Thank you for purchasing a Generac transfer switch. This manual has been prepared especially for the purpose of familiarizing personnel with the design, application, installation, operation and servicing of the applicable equipment. Read this manual carefully and comply with all instructions. This will help to prevent accidents or damage to equipment that might otherwise be caused by carelessness, incorrect application, or improper procedures.

Every effort has been expended to make sure that the contents of this manual are both accurate and current. The manufacturer, however, reserves the right to change, alter or otherwise improve the product or manual at any time without prior notice.

Unpacking

Carefully unpack the transfer switch. Inspect closely for any damage that might have occurred during shipment. The purchaser must file with the carrier any claims for loss or damage incurred while in transit.

Check that all packing material is completely removed from the switch prior to installation.

Contents in Loose Parts Bag

- Owner's manual
- Warranty statement
- Manual operating handle
- Storage bracket for manual operating handle
- Fault current label
- Clear decal for fault current label

Equipment Description

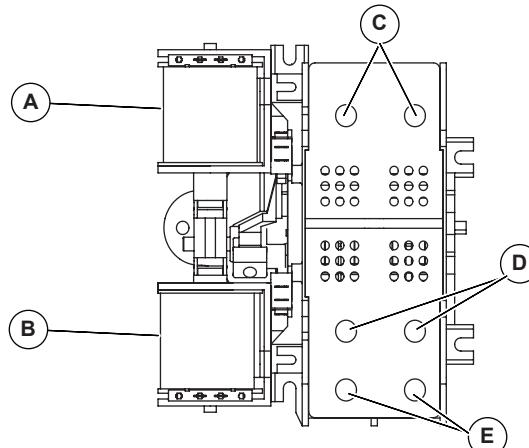
This automatic transfer switch is used for transferring electrical load from a utility (normal) power source to a generator (standby) power source. Transfer of electrical loads occurs automatically when the utility power source has failed or is substantially reduced and the generator source voltage and frequency have reached an acceptable level. The transfer switch prevents electrical feedback between two different power sources (such as the utility and generator sources) and, for that reason, codes require it in all standby electric system installations.

The transfer switch consists of a transfer mechanism, utility service disconnect circuit breaker (if equipped), a PWRview energy monitor, and a Smart A/C module incorporating fuses and two terminal blocks for transfer switch connections.

Transfer Switch Mechanism

See [Figure 2-1](#). This switch is used with a single-phase system when the single-phase neutral line is to be connected to a neutral lug and is not to be switched.

Solderless, screw-type terminal lugs are standard.


The conductor size range is as follows:

Switch Rating	Wire Range	Conductor Tightening Torque
100A	#14-1/0 AWG (Cu/Al)	50 in-lbs (5.6 Nm)
150/200A	#6-250 MCM (Cu/Al)	275 in-lbs (31 Nm)

This transfer switch is suitable for control of motors, electric discharge lamps, tungsten filament and electric heating equipment where the sum of motor full load ampere ratings and the ampere ratings of other loads do not exceed the ampere rating of the switch and the tungsten load does not exceed 30 percent of the switch rating.

This ETL listed transfer switch is for use in optional standby systems only (NEC article 702).

A 200A rated switch is suitable for use on a circuit capable of 22,000 RMS symmetrical amperes, 240 VAC when protected by a circuit breaker without an adjustable short time response or by fuses.

000219

Figure 2-1. Typical Single-Phase ATS Transfer Mechanism

A	Utility Closing Coil
B	Generator Closing Coil
C	Utility Lugs (N1 & N2)
D	Generator Lugs (E1 & E2)
E	Load Lugs (T1 & T2)

Utility Service Circuit Breaker (if equipped)

The utility service circuit breakers for 200 amp models are:

- Type 225AF, 2-pole
- 22,000 A/C
- 120/240VAC, 150A/200A
- 50/60 Hertz
- Wire range:
 - Line: 300 MCM - 6 STR (Cu/Al)
 - Load - ATS: 250 MCM - 6 STR (Cu/Al)
- See Circuit Breaker markings and decal on inside of the door for torque specifications.

Transfer Switch Data Decal

A data decal is permanently affixed to the transfer switch enclosure. Use this transfer switch only with the specific limits shown on the data decal and on other decals and labels that may be affixed to the switch. This will prevent damage to equipment and property.

When requesting information or ordering parts for this equipment, make sure to include all information from the data decal.

For future reference, record the Model and Serial numbers in the space provided on the front cover of this manual.

Transfer Switch Enclosure

The standard switch enclosure is a National Electrical Manufacturer's Association (NEMA) 3R type. NEMA 3R (indoor/outdoor rated) type enclosures primarily provide a degree of protection against falling rain and sleet; are undamaged by the formation of ice on the enclosure.

Safe Use of Transfer Switch

WARNING

Consult Manual. Read and understand manual completely before using product. Failure to completely understand manual and product could result in death or serious injury.

(W0000100)

Before installing, operating or servicing this equipment, read the [Safety Rules](#) carefully. Comply strictly with all [Safety Rules](#) to prevent accidents and/or damage to the equipment. The manufacturer recommends that a copy of the [Safety Rules](#) be posted near the transfer switch. Also, be sure to read all instructions and information found on tags, labels and decals affixed to the equipment.

Three publications that outline the safe use of transfer switches are the following:

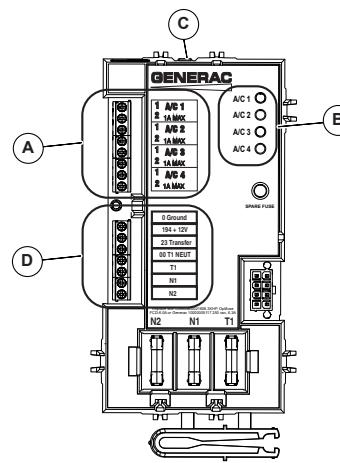
- NFPA 70; National Electrical Code

- UL 1008; STANDARD FOR SAFETY-AUTOMATIC TRANSFER SWITCHES
- UL 67; Panelboards Marking and Application Guide

NOTE: It is essential to use the latest version of any standard to ensure correct and current information.

Load Management Options

Load management systems are designed to work together to prevent a generator from being overloaded by large appliance loads. A Smart A/C Module (SACM) is provided as standard equipment with this switch. An optional Smart Management Module (SMM) is also available.


Smart A/C Module (SACM)

Up to four air conditioner loads can be managed by the SACM. The SACM manages the loads by "shedding" the connected loads in the event of a drop in generator frequency (overload). Loads to be "shed" are in 4 priority levels on the module.

See [Figure 2-2](#). Priorities A/C 1-4 (A) have connections for an air conditioner. To control an air conditioner, no additional equipment is required. Internal normally closed relays interrupt the 24 VAC thermostat control signal to disable the air conditioner load.

Four LEDs, located on the SACM (B), illuminate when a load is connected and powered.

See [Figure 2-2](#). The SACM has a test button (C) used to simulate an overload condition. This button operates even when the transfer signal is inactive. The Generator Control Wiring is connected to terminals (D).

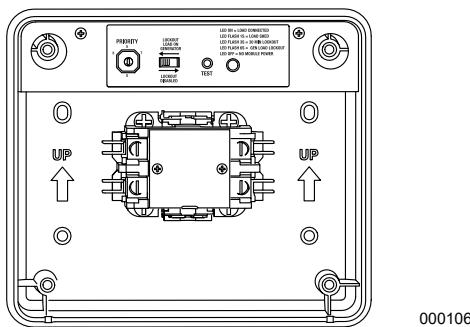

015523

Figure 2-2. Smart A/C Module (SACM)

Smart Management Module (SMM) (sold separately)

Any loads, including central air conditioners, can be managed using a Smart Management Module (SMM). The system can accommodate up to eight individual SMMs.

NOTE: SMMs are self-contained and have individual built-in controllers.

Refer to the SMM Owner's/Installation Manual for detailed characteristics and specifications of that product.

Figure 2-3. Smart Management Module (SMM)

Application Considerations

Generator overload condition is determined by generator frequency. Loads are shed when frequency is less than 58 Hz for three seconds or less than 50 Hz for $\frac{1}{2}$ second (for 60 Hz systems).

The SACM can be used in conjunction with individual SMMs to manage a combined total of eight loads.

- Use Priorities A/C 1-4 on the SACM as the top priorities, then up to four SMMs as Priorities 5-8.
- Use only select A/C priorities on the SACM as the top priorities, then use additional SMMs as the remaining priorities.
- A SMM can share a priority with an A/C priority on the SACM provided the generator is sized to handle the combined surge load from both appliances. Sharing priorities can allow up to 12 loads to be managed in a properly sized system.

In any combination of modules, the recovery times after a loss of utility power or shutdown due to overload are shown in [Table 2-1](#).

Table 2-1. Priority Settings

Priority	Recovery Time	SACM	SMM
1	5 minutes	Yes	Yes
2	5 minutes 15 seconds	Yes	Yes
3	5 minutes 30 seconds	Yes	Yes
4	5 minutes 45 seconds	Yes	Yes
5	6 minutes	NA	Yes
6	6 minutes 15 seconds	NA	Yes
7	6 minutes 30 seconds	NA	Yes
8	6 minutes 45 seconds	NA	Yes

This page intentionally left blank.

Section 3: Installation

Introduction to Installation

Though this equipment has been wired and tested at the factory, the installer should verify all wiring connections are proper. Installing the switch includes the following procedures:

- Mounting the enclosure.
- Connecting power source and load leads.
- Connecting the generator start and sensing circuit.
- Connecting any auxiliary contact (if needed).
- Testing functions.

Mounting the Enclosure

DANGER

Equipment Malfunction. Installing a dirty or damaged transfer switch will cause equipment malfunction and will result in death or serious injury.

(D000119)

Mounting dimensions for the transfer switch enclosure are in this manual. Enclosures are typically wall-mounted. See [Drawings and Diagrams](#).

This transfer switch is mounted in a NEMA type 3R enclosure. It can be mounted outside or inside and should be

based on the layout of installation, convenience, and proximity to the utility supply and load center.

Install transfer switch as close as possible to electrical loads that will be connected to it. Mount transfer switch vertically to a rigid supporting structure. Level all mounting points to prevent transfer switch distortion. Use washers behind mounting holes to level the unit if necessary.

Opening the Enclosure

See [Figure 3-1](#). First, remove outer cover (A):

1. Remove two thumb screws (B).
2. Slide slot (C) over retention tab.
3. Lower cover until clear of top flange (D), and pull away from enclosure.
4. Remove inner panel (E):
 - a. Loosen nut (F).
 - b. Grasp inner panel at two cutouts (G—left and right). Tilt inner panel as shown, passing nut through t-slot (H) in inner panel.
 - c. Lower inner panel until clear of two retention slots (J—left and right sides), and pull away from enclosure.

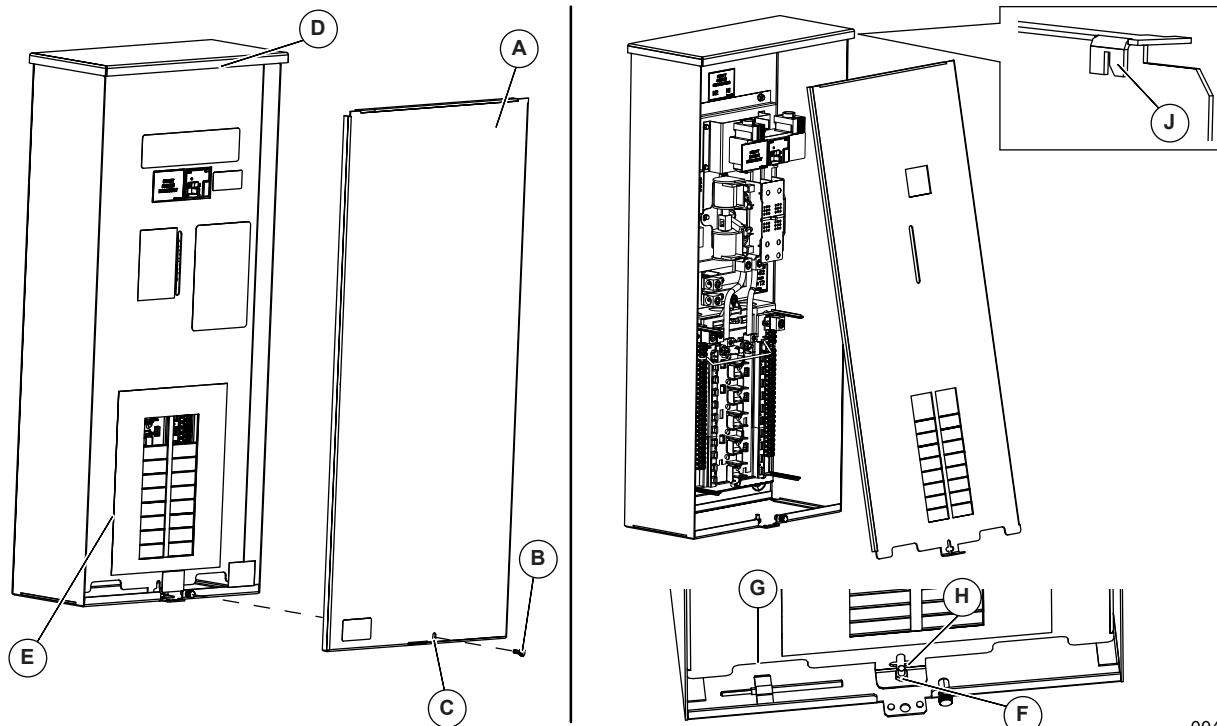
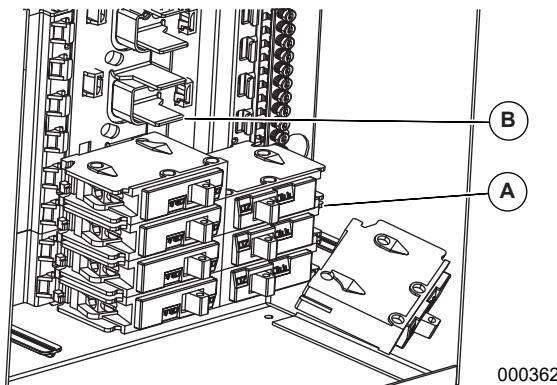



Figure 3-1. Open Enclosure

Installing Breakers

See [Figure 3-2](#). Insert tab on each breaker (A) into the hook on the bus (B). Push breaker into bus until it snaps into place.

Figure 3-2. Install Breakers

NOTE: The following one (1) inch circuit breaker manufacturers are permitted to be installed: Siemens, Murray, Eaton BR, and Square D Homeline.

Installing Branch Circuit Conductors

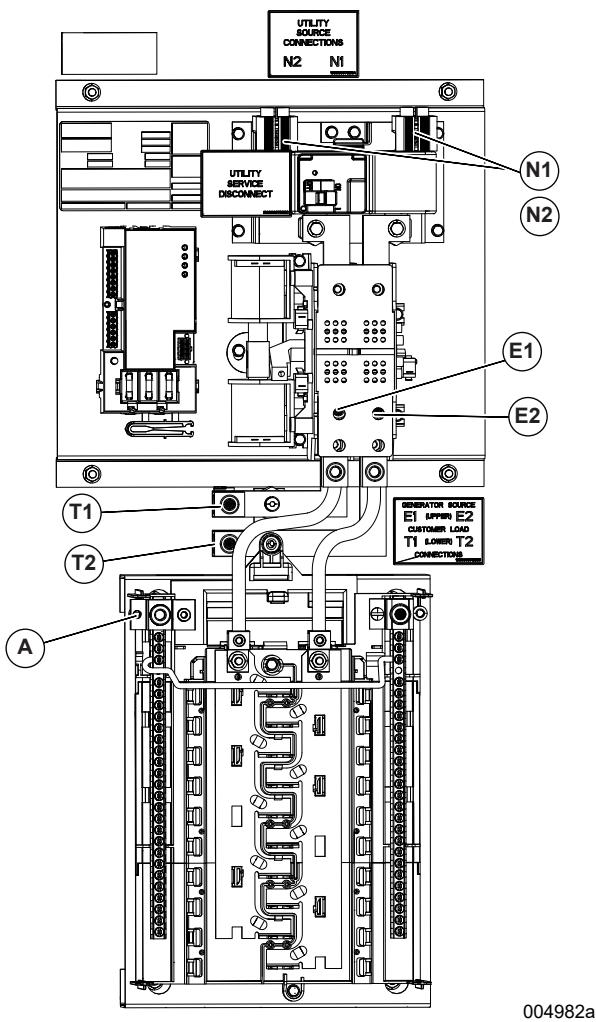
1. Install properly sized branch circuit conductors into the transfer switch through the knockouts provided. Additional knockouts can be made in the field as needed.
2. Connect the ungrounded branch circuit conductors (hot conductors) to a properly sized circuit breaker approved for use with the transfer switch.
3. Terminate the neutral conductor and equipment grounding conductor of the branch circuit at the neutral/equipment ground terminal bars.
4. Size all conductors, raceways, conduits, and junction boxes, if required, to the applicable NEC code articles and follow the NEC installation requirements for the wiring method(s) selected.

NOTE: Multi-wire branch circuits must be installed in accordance with NEC Article 210.4.

Connecting Power Source and Generator Power Supply

Electrocution. Turn utility and emergency power supplies to OFF before connecting power source and load lines. Failure to do so will result in death or serious injury.

(D000116)


Equipment damage. Verify all conductors are tightened to the factory specified torque value. Failure to do so could result in damage to the switch base.

(C000120)

Installation and interconnection diagrams are provided in this manual.

NOTE: All installations must comply with national, state, and local codes. It is the responsibility of the installer to perform an installation that will pass final electrical inspection.

1. Connect utility supply at utility service disconnect circuit breaker terminals N1 and N2. Utility supply lugs are equipped with the 2017 and 2020 NEC required finger safe barriers. These barriers must remain in place after installation.
2. Connect utility neutral conductor to grounded terminal bar. Neutral/grounding conductor terminal bars are bonded together and to the transfer switch enclosure through the use of a green main bonding jumper screw.
3. Connect loads to integrated load center with customer-supplied circuit breakers.
4. See [Figure 3-1](#) and [Figure 3-3](#). Connect generator to generator terminals (E1 and E2) on the transfer mechanism.

004982a

Figure 3-3. Wiring Connections

5. Connect generator neutral wire to top neutral lug or side lugs on the panel board.
6. Connect neutral conductors to the lugs and terminals along the neutral/ground bars in panel board section of transfer switch.
7. Connect a maximum 200A subpanel feeder to lower T1 and T2 connections. Connect feeder neutral and equipment grounding conductors to the neutral/grounding terminal bar in the transfer switch.
8. Connect grounding electrode conductors to neutral/ground terminal bars in panel board portion of transfer switch.

NOTE: A neutral to equipment ground main bonding screw (A) is provided for use where transfer switch is installed as service equipment.

Conductor sizes must be adequate to handle maximum current they will be subjected to, based on the 75 °C column of tables, charts, etc. used to size conductors.

Installation must fully comply with all applicable codes, standards, and regulations.

All power cables can enter enclosure through provided knockouts. Additional knockouts into transfer switch can be made in the field as needed. Conduit entry shall maintain correct wire bending spaces required by Tables 312.6 (A) and (B) in the NEC. Conduits should be arranged to provide separation between utility and generator supply conductors inside the enclosure.

NOTE: If aluminum conductors are used, apply corrosion inhibitor to conductors. After tightening terminal lugs, carefully wipe away any excess corrosion inhibitor.

Tighten terminal lugs to required torque values as noted on decal located on the inside of the door. After tightening terminal lugs, carefully wipe away any excess corrosion inhibitor.

Connecting Start Circuit Wires

Control system interconnections consist of 0, 194, 23, 00, T1, N1, and N2. The connections are color coded on the load shed to match connections in the Generac genset. Generac Type TC-ER-JP tray cable includes power cables with all necessary color-coded control wiring. It is suitable for direct burial, overhead, and indoor wiring.

NOTE: See Article 336 in the 2017 and 2020 editions of the NEC for more information on the installation requirements for Type TC-ER-JP cable.

The generator control wiring is a Class 1 signaling circuit. See instruction manual of specific engine generator for wiring connection details. Recommended wire gauge sizes for this wiring depends on wire length, as recommended in the following chart:

Recommended Wire Size	Maximum Wire Length
	(One transfer switch and load shed module)
No. 18 AWG	1–115 ft (0.3–35 m)
No. 16 AWG	116–185 ft (36–56 m)
No. 14 AWG	186–295 ft (57–89 m)
No. 12 AWG	296–460 ft (90–140 m)

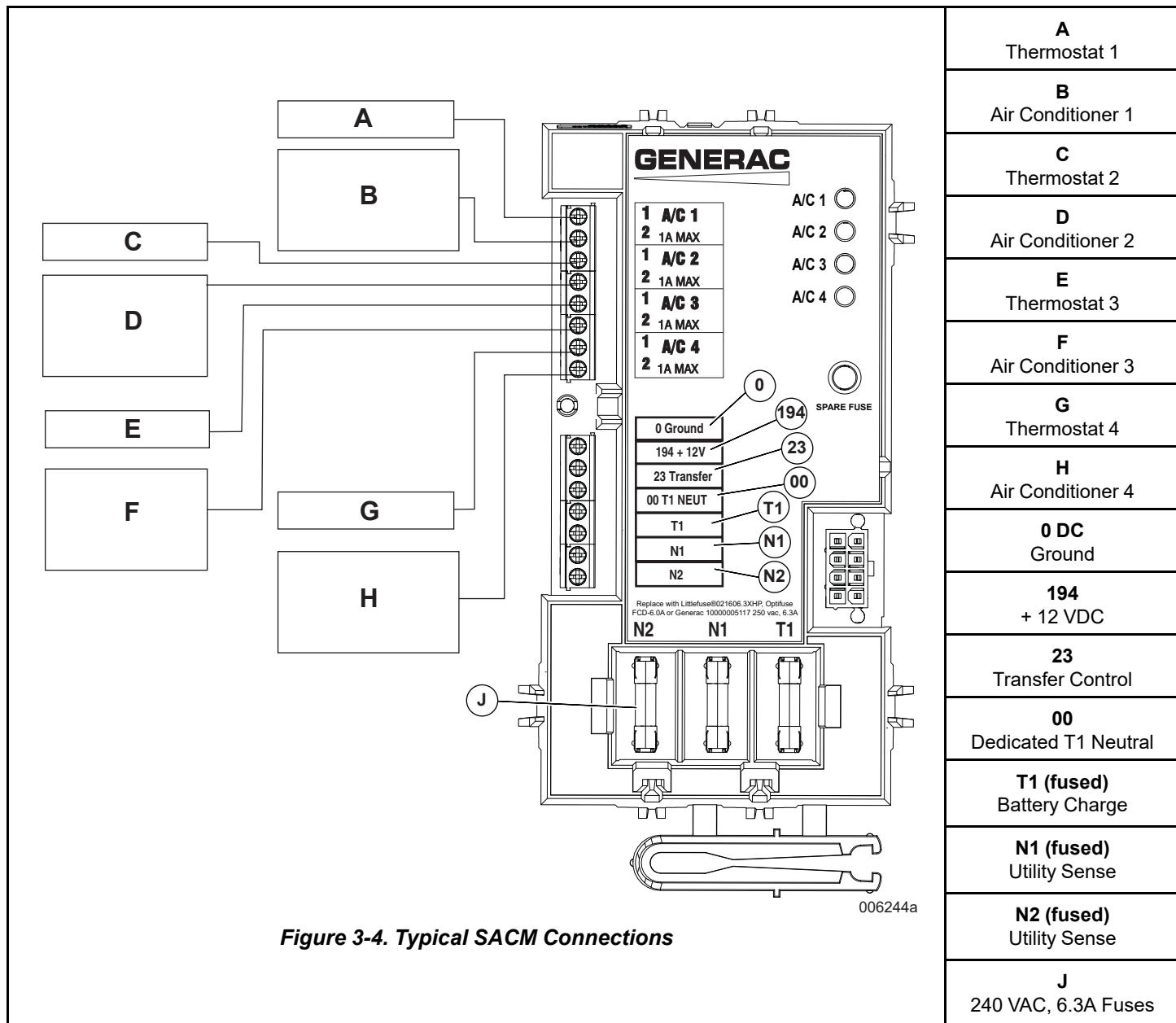
Exception: Conductors of AC and DC circuits, rated 1000 volts nominal or less, shall be permitted to occupy the same equipment, cable, or conduit. All conductors shall have an insulation rating equal to at least the maximum circuit voltage applied to any conductor within the equipment, cable, or conduit. See NEC 300.3(C)(1).

Connecting SACM

See [Figure 3-4](#). The SACM can control an air conditioner (24 VAC) directly.

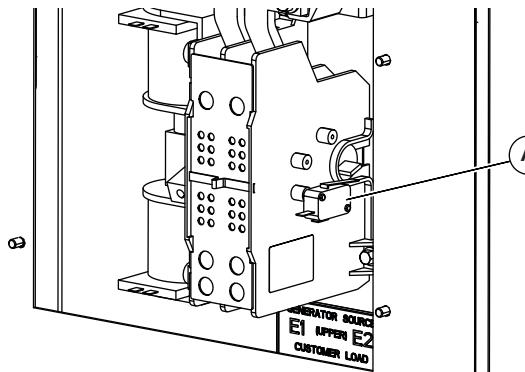
Control of Air Conditioner Load

1. Route the thermostat cable (from the furnace/thermostat to the outdoor air conditioner unit) to the transfer switch.
2. See [Figure 3-4](#). Connect the wire to the terminal strip terminals (A/C 1) on the SACM. These are normally closed contacts which open upon load


shed conditions. Route thermostat wire away from high voltage wires.

3. If required, connect additional air conditioners to the terminal strip terminals (A/C 2-4).

Contact Ratings	
A/C 1-4	24 VAC, 1.0 Amp Max


NOTE: These instructions are for a typical air conditioner installation. Control of certain heat pumps and 2-stage air conditioners may require special connections or the use of SMMs to control the loads.

Typical SACM Connections

Auxiliary Contact

See [Figure 3-5](#). If desired, there is one normally-closed Auxiliary Contact (A) on the transfer switch to operate customer accessories, remote advisory lights, or remote annunciator devices. A suitable power source must be connected to the common terminal. If needed, an extra auxiliary contact can be added.

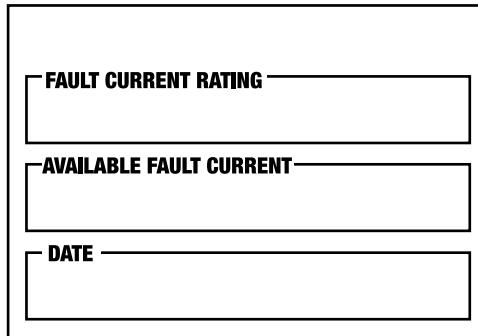
003626

Figure 3-5. Auxiliary Contact

The auxiliary contact is normally closed when the transfer switch is in utility mode. The contacts will open when the transfer switch is in the standby power mode.

NOTE: Auxiliary Contact is rated 10 amps at 125 or 250 volts AC, and 0.6 amps at 125 volts DC.

CAUTION


Equipment damage. Verify that voltage and current are within specification before energizing this equipment. Exceeding rated voltage and current will damage the auxiliary contacts.

(C000134)

Fault Current Label

See [Figure 3-6](#). A Fault Current Identification Label is provided in the bag containing the unit Owner's Manual and transfer switch manual operating handle. The 2017 NEC requires that the short-circuit current rating of the transfer equipment, based on the type of overcurrent protective device protecting the transfer equipment, be field marked on the exterior of the transfer equipment. For NEC compliance, verify the required short-circuit current rating of the transfer switch before installation. The completed label provides the local AHJ (Authority Having Jurisdiction) with the information he or she may require during inspection.

Apply the label to the exterior of the transfer switch enclosure. Use a pen to fill in the required information, and then cover the label with the clear protective decal.

004496

Figure 3-6. Fault Current Label

This page intentionally left blank.

Section 4: Operation

Functional Tests and Adjustments

Following transfer switch installation and interconnection, inspect the entire installation carefully. A competent, qualified electrician should inspect it. The installation should comply strictly with all applicable codes, standards, and regulations. When absolutely certain the installation is proper and correct, complete a functional test of the system.

CAUTION

Equipment damage. Perform functional tests in the exact order they are presented in the manual. Failure to do so could result in equipment damage.

(C000121)

IMPORTANT NOTE: Before proceeding with functional tests, read and make sure all instructions and information in this section is understood. Also read the information and instructions of labels and decals affixed to the switch. Note any options or accessories that might be installed and review their operation.

Manual Operation

DANGER

Electrocution. Do not manually transfer under load. Disconnect transfer switch from all power sources prior to manual transfer. Failure to do so will result in death or serious injury, and equipment damage.

(D000132)

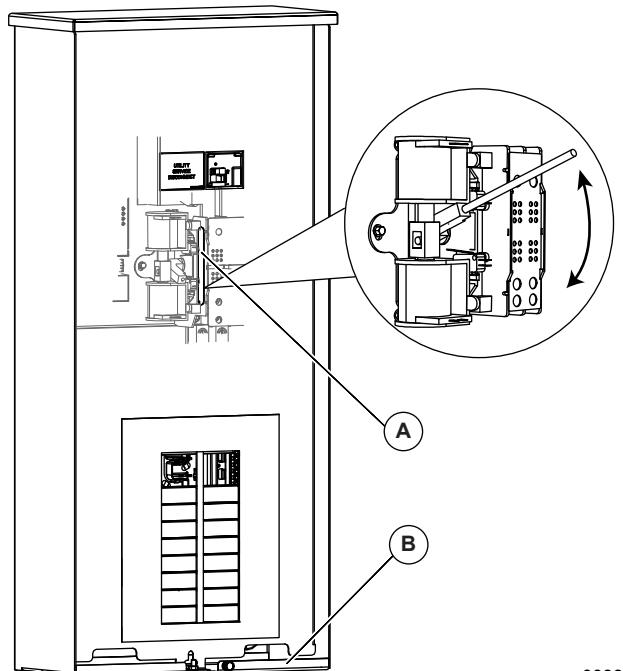
CAUTION

Equipment damage. Do not use excessive force while manually operating the transfer switch. Doing so could result in equipment damage.

(C000122)

See [Figure 4-1](#). A manual handle (B) is shipped with the transfer switch manual. Manual operation must be verified BEFORE transfer switch is operated electrically. Proceed as follows to verify manual operation:

1. Verify generator is OFF.
2. Turn OFF both utility (service disconnect circuit breaker) and emergency (generator main line circuit breaker) power supplies to transfer switch.
3. See [Figure 4-1](#). Note position of transfer mechanism main contacts (A) by observing the movable contact carrier arm. This can be viewed through the long narrow slot in the inside cover. The top of the


movable contact carrier arm is yellow to be easily identified.

- Manual operation handle in UP position — LOAD terminals (T1, T2) are connected to utility terminals (N1, N2).
- Manual operation handle in DOWN position— LOAD terminals (T1, T2) are connected to EMERGENCY terminals (E1, E2).

Close to Utility Source Side

See [Figure 4-1](#). Before proceeding, verify position of transfer switch by observing position of manual operation handle. If manual operation handle is UP, contacts are closed in utility (normal) position; no further action is required. If manual operation handle is DOWN, proceed as follows:

1. With manual operation handle inserted into movable contact carrier arm, move handle UP. Hold on to manual operation handle as it will move quickly after the center of travel.
2. Remove manual operating handle from movable contact carrier arm. Return manual operation handle to storage bracket.

009339

Figure 4-1. Manual Operation

Close to Generator Source Side

See [Figure 4-1](#). Before proceeding, verify position of transfer switch by observing the position of the manual

operation handle. If manual operation handle is DOWN, contacts are closed in generator (standby) position; no further action is required. If manual operation handle is UP, proceed as follows:

1. With manual operation handle inserted into movable contact carrier arm, move manual operation handle DOWN. Hold on to manual operation handle as it will move quickly after the center of travel.
2. Remove manual operating handle from movable contact carrier arm. Return manual operation handle to storage bracket.

Return to Utility Source Side

Proceed as follows to return to utility source side:

1. Manually actuate transfer switch to return manual operating handle to the UP position.
2. Remove manual operating handle from movable contact carrier arm. Return manual operation handle to storage bracket.

Voltage Checks

NOTE: Use the Digital Multimeter (DMM) LowZ low input impedance setting to collect accurate voltage measurements. LowZ eliminates the possibility of inaccurate ghost voltage readings, also known as phantom voltage or stray voltage readings. See DMM manufacturer's literature for additional information.

Utility Voltage Checks

DANGER

Electrocution. High voltage is present at transfer switch and terminals. Contact with live terminals will result in death or serious injury.

(D000129)

1. Turn ON the utility power supply to the transfer switch using the utility service disconnect circuit breaker.
2. With an accurate AC voltmeter, check for correct voltage. Measure across ATS terminal lugs N1 and N2; N1 to NEUTRAL and N2 to NEUTRAL.

Generator Voltage Checks

DANGER

Electrocution. High voltage is present at transfer switch and terminals. Contact with live terminals will result in death or serious injury.

(D000129)

1. On the generator panel, select the MANUAL mode of operation. The generator should crank and start.
2. Let the generator stabilize and warm up at no-load for at least five minutes.

3. Set the generator's main circuit breaker (CB1) to its ON or CLOSED position.
4. With an accurate AC voltmeter and frequency meter, check the no-load, voltage and frequency. Measure across ATS terminal lugs E1 to E2; E1 to NEUTRAL and E2 to NEUTRAL.

Frequency	60–62 Hz
Terminals E1 to E2	240–246 VAC
Terminals E1 to NEUTRAL	120–123 VAC
Terminals E2 to NEUTRAL	120–123 VAC

5. When certain that generator supply voltage is correct and compatible with transfer switch ratings, turn OFF the generator supply to the transfer switch.
6. Set the generator main circuit breaker (CB1) to OFF or OPEN.
7. On the generator panel, select the OFF mode to shut down the generator.

Do NOT proceed until generator AC output voltage and frequency are correct and within stated limits. If the no-load voltage is correct but no-load frequency is incorrect, the engine governed speed may require adjustment. If no-load frequency is correct but voltage is not, the voltage regulator may require adjustment.

Generator Tests Under Load

Proceed as follows to perform generator tests under load:

1. Set generator main line circuit breaker (MLCB) to OFF (OPEN).
2. Set utility service disconnect circuit breaker of the transfer switch to OFF (OPEN), and turn OFF (OPEN) all load circuit breakers.
3. Manually actuate transfer switch main contacts to emergency (STANDBY) position. See [Manual Operation](#).
4. Select MANUAL mode to start the generator. Allow engine to stabilize for a few minutes, and close lid.
5. Set generator MLCB to ON (CLOSED). Generator now powers all LOAD circuits. Verify generator operation under load as follows:
 - Turn on electrical loads to the full rated wattage/amperage capacity of generator. DO NOT OVERLOAD.
 - With maximum rated load applied, check voltage and frequency across transfer switch terminals E1 and E2. Voltage should be greater than 230 VAC (240 VAC system); frequency should be greater than 59 Hz.

- Verify fuel pressure remains within acceptable parameters (see generator installation manual).
- Allow generator to run under rated load for at least 30 minutes. With unit running, inspect for unusual noises, vibration, or overheating that might indicate a problem.

- Set generator MLCB to OFF (OPEN) when test under load is complete.
- Allow generator to run at no-load for several minutes. Then, shut down generator by pressing OFF.
- Set main switch contacts to utility.

NOTE: See [Manual Operation](#). Handle and operating lever of transfer switch should be in down position.

- Set utility service disconnect circuit breaker of transfer switch to ON (CLOSED).

System is now set for fully automatic operation.

Checking Automatic Operation

To check the system for proper automatic operation, proceed as follows:

- Verify generator is OFF.
- Set the utility service disconnect circuit breaker of the transfer switch to OFF or OPEN.
- Verify switch is de-energized.
- Install front cover of the transfer switch.
- Set the utility service disconnect circuit breaker of the transfer switch to ON or CLOSED.
- Set generator MLCB to ON.
- Select AUTO on generator control panel. System is now ready for automatic operation.
- Set transfer switch utility service disconnect circuit breaker to OFF (OPEN).

With the generator ready for automatic operation, the engine should crank and start when the utility source power is turned OFF after a five second delay (factory default setting). After starting, the transfer switch should connect load circuits to the standby side after a five (5) second warm-up delay. Let the system operate through its entire automatic sequence of operation.

NOTE: Timer durations may differ between generators and settings.

With the generator running and loads powered by generator AC output, set the utility service disconnect circuit breaker of the transfer switch to ON or CLOSED. The following should occur:

- After approximately 15 seconds, the switch should transfer loads back to the utility power source.

- Approximately one minute after re-transfer, the generator should shut down.

With the generator in the AUTOMATIC mode, the system is now set for fully automatic operation.

Installation Summary

- Verify the installation has been properly performed as outlined by the manufacturer and that it meets all applicable laws and codes.
- Verify proper operation of the system as outlined in the appropriate installation and owner's manuals.
- Educate the end-user on the proper operation, maintenance and service call procedures.

NOTE: The Utility Power Circuit Breaker in the transfer switch must be turned OFF to simulate a utility outage. Shutting off the main disconnect in a subpanel connected to the transfer switch will NOT simulate an outage.

Shutting Generator Down While Under Load

IMPORTANT NOTE: To avoid equipment damage, follow these steps, in order, when shutting the generator down during utility outages. Shutdowns may be required during outages to perform routine maintenance or to conserve fuel.

To turn the generator OFF (while running in AUTO and online):

- Turn the main utility disconnect off.
- Turn the generator MLCB (generator disconnect) to OFF (OPEN).
- Run the generator for approximately one minute for proper cooling.
- Turn the generator OFF.

To turn the generator back ON:

- Put the generator into AUTO. Start generator and warm-up for a few minutes.
- Set the MLCB (generator disconnect) to ON (CLOSED).

The system now operates in automatic mode. The main utility disconnect can be turned ON (CLOSED). To shut the unit off, repeat this complete process.

Shutting Generator Down To Perform Maintenance

Proceed as follows to shut down generator for maintenance:

- Press the OFF mode button on the controller.
- Turn the main utility disconnect OFF (OPEN).

3. Turn the MLCB (generator disconnect) on the generator to OFF (OPEN) and follow maintenance procedure(s).

To turn the generator back ON:

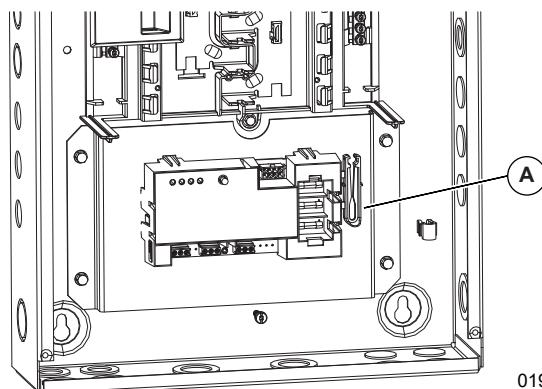
1. Turn the main utility disconnect ON (CLOSED).
2. Put the generator into AUTO mode.
3. Set the MLCB (generator disconnect) on the generator to ON (CLOSED).

The system is now in automatic mode.

Testing the SACM

A “Test” pushbutton is provided on top of the SACM to test the operation of the load shed functions. The test pushbutton will work when the ATS is in the utility or the generator position.

Proceed as follows to test the SACM:


1. Turn on the utility supply to the ATS.
2. Verify managed loads are powered and all LEDs illuminate on SACM.
3. Press the TEST button on the SACM.
4. Verify that all of the connected loads to be “shed” become disabled.
5. After five (5) minutes verify A/C 1 is energized and Status LED A/C 1 is ON.
6. After another 15 seconds, verify A/C 2 is energized and Status LED A/C 2 is ON.
7. After another 15 seconds, verify Load A/C 3 is energized and Status LED Load A/C 3 is ON.
8. After another 15 seconds, verify A/C 4 is energized and Status LED A/C 4 is ON.

Testing the SMM

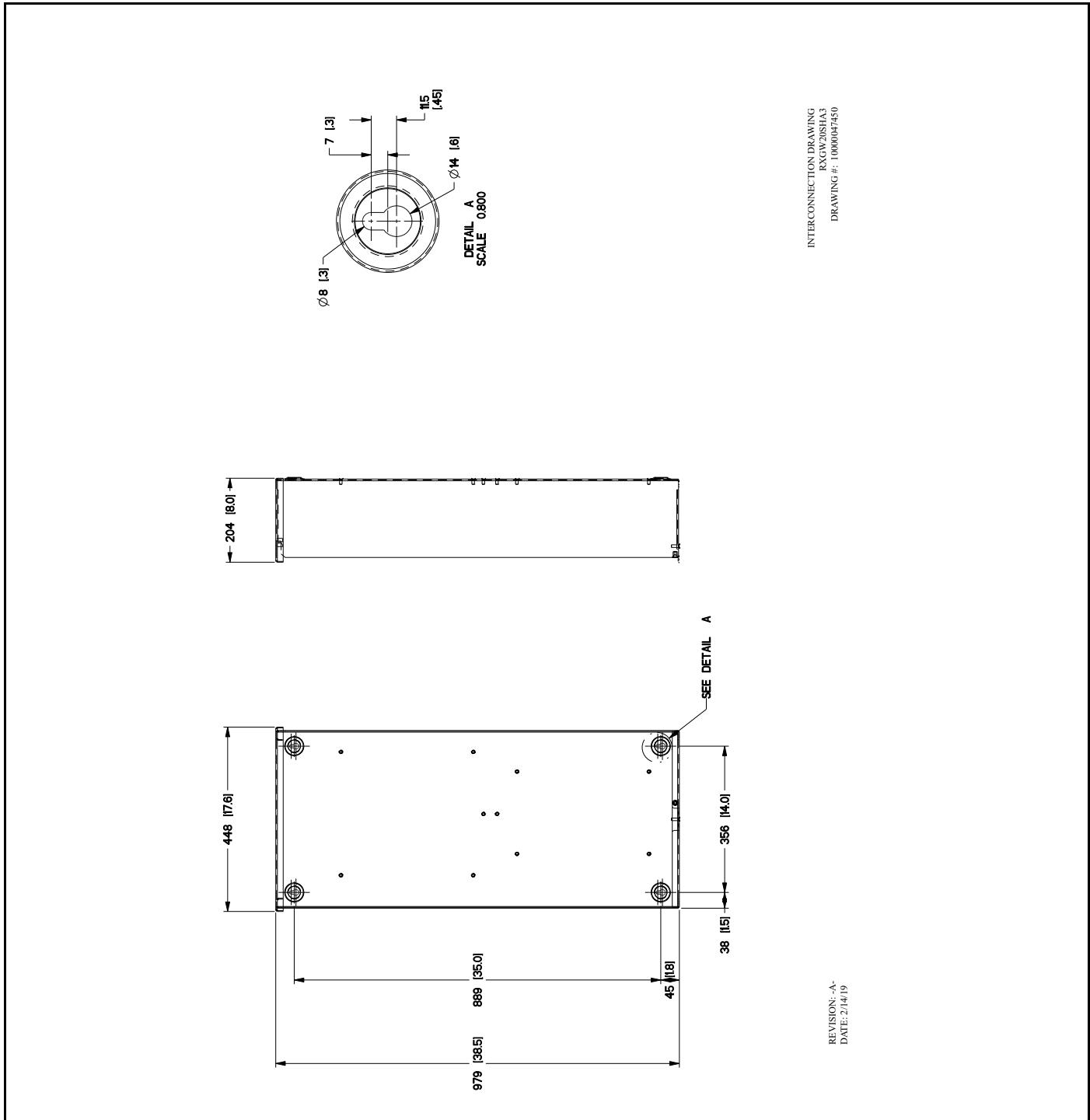
Refer to the SMM Owner’s/Installation Manual for testing procedure.

SACM Fuse Service

See [Figure 4-2](#). A fuse removal and installation tool (A) is included in the SACM housing.

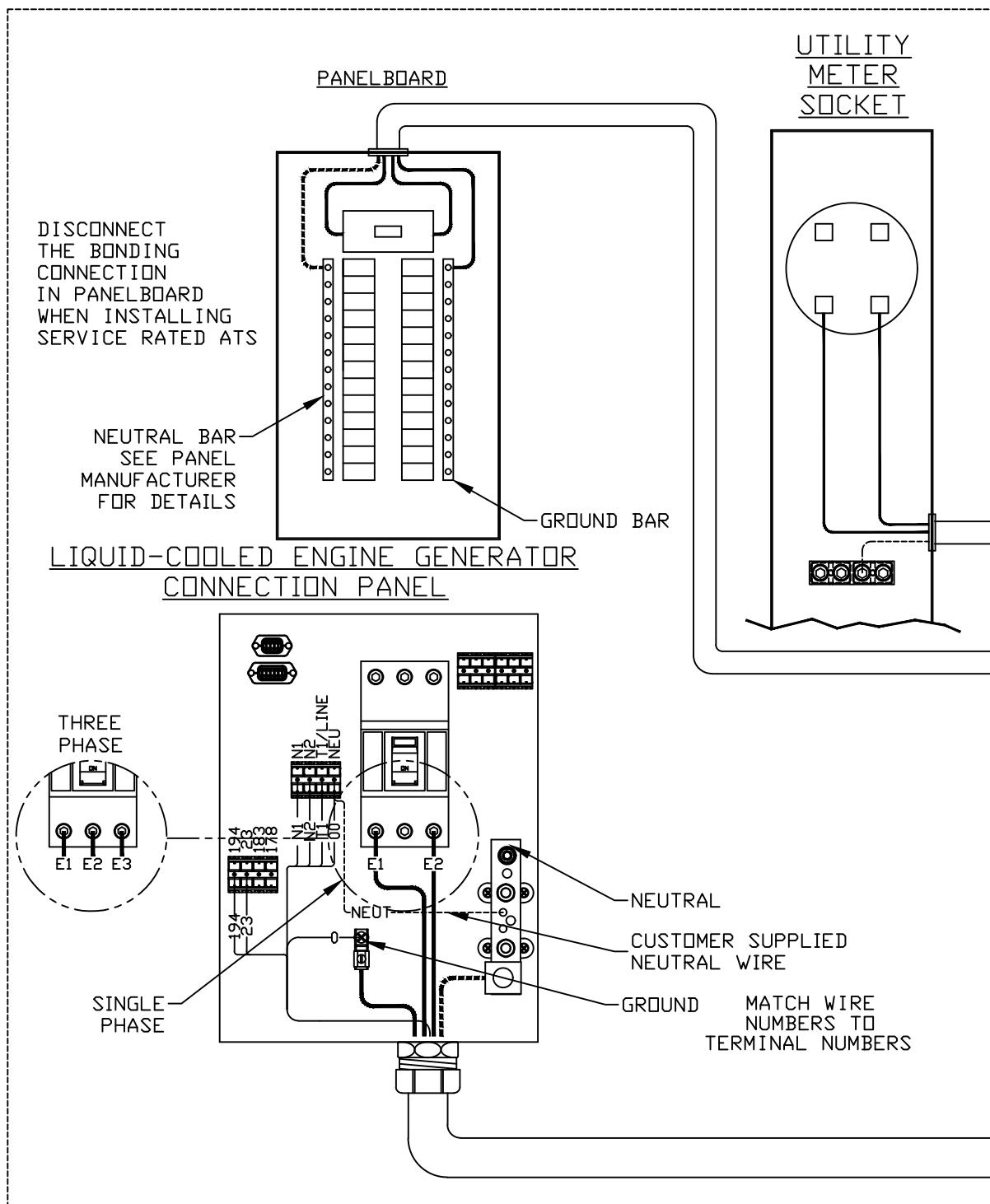
Figure 4-2. Fuse Removal and Installation Tool

If a fuse requires replacement, snap the tool free with an appropriate tool such as diagonal pliers, and use it to replace the fuse. The tool can be stored in the SACM housing retainer directly above the fuses, with the large thumb tab facing out.

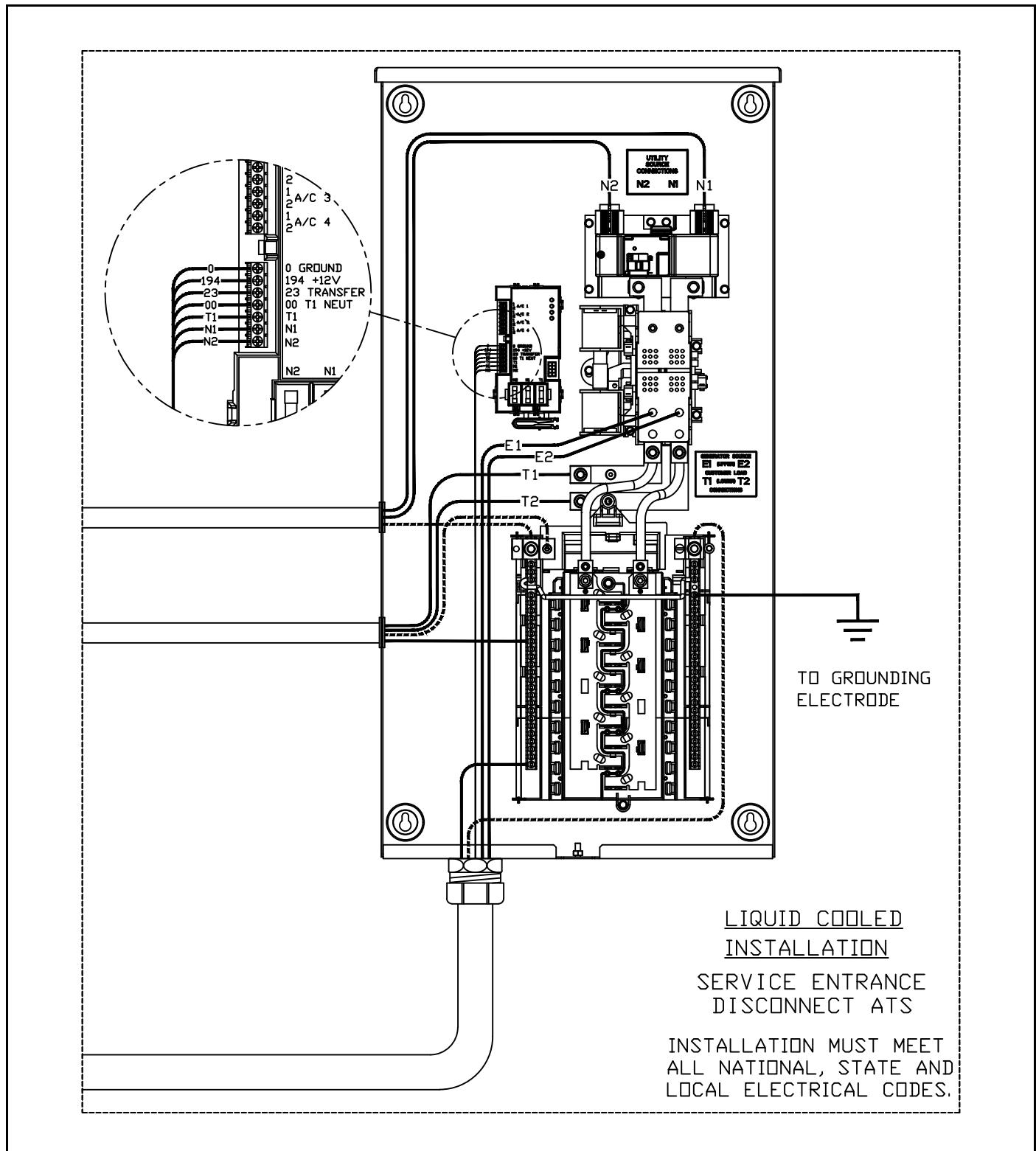

Use only Generac replacement fuses — part number 10000005117, rated 240 VAC, 6.3 Amps, 10,000 AIC.

Alternative fuses are Littelfuse® 021606.3MXP or Opti-fuse® FCD-6.3.

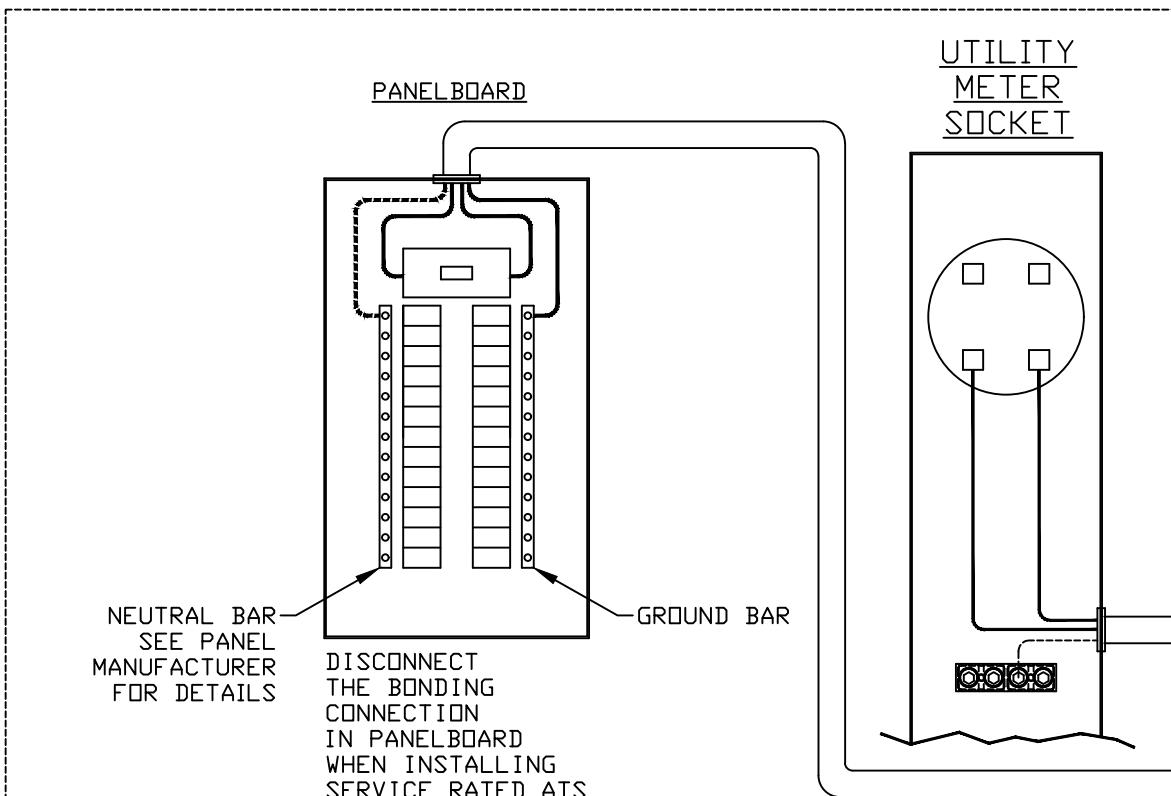
Section 5: Drawings and Diagrams


Installation Drawing

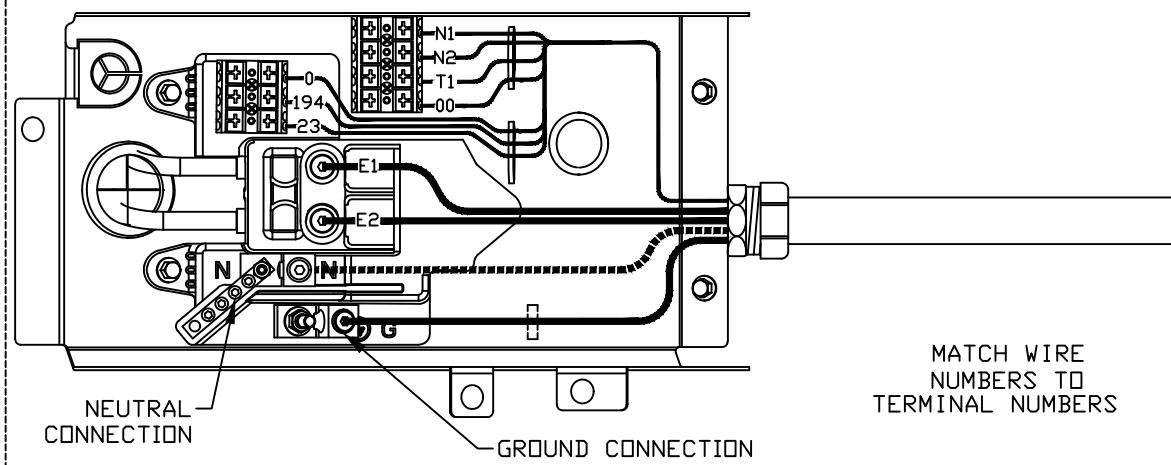
No. 10000047450-A


Interconnection Drawing—Liquid-Cooled Engine Generator

No. 10000047283-C (Part 1 of 4)

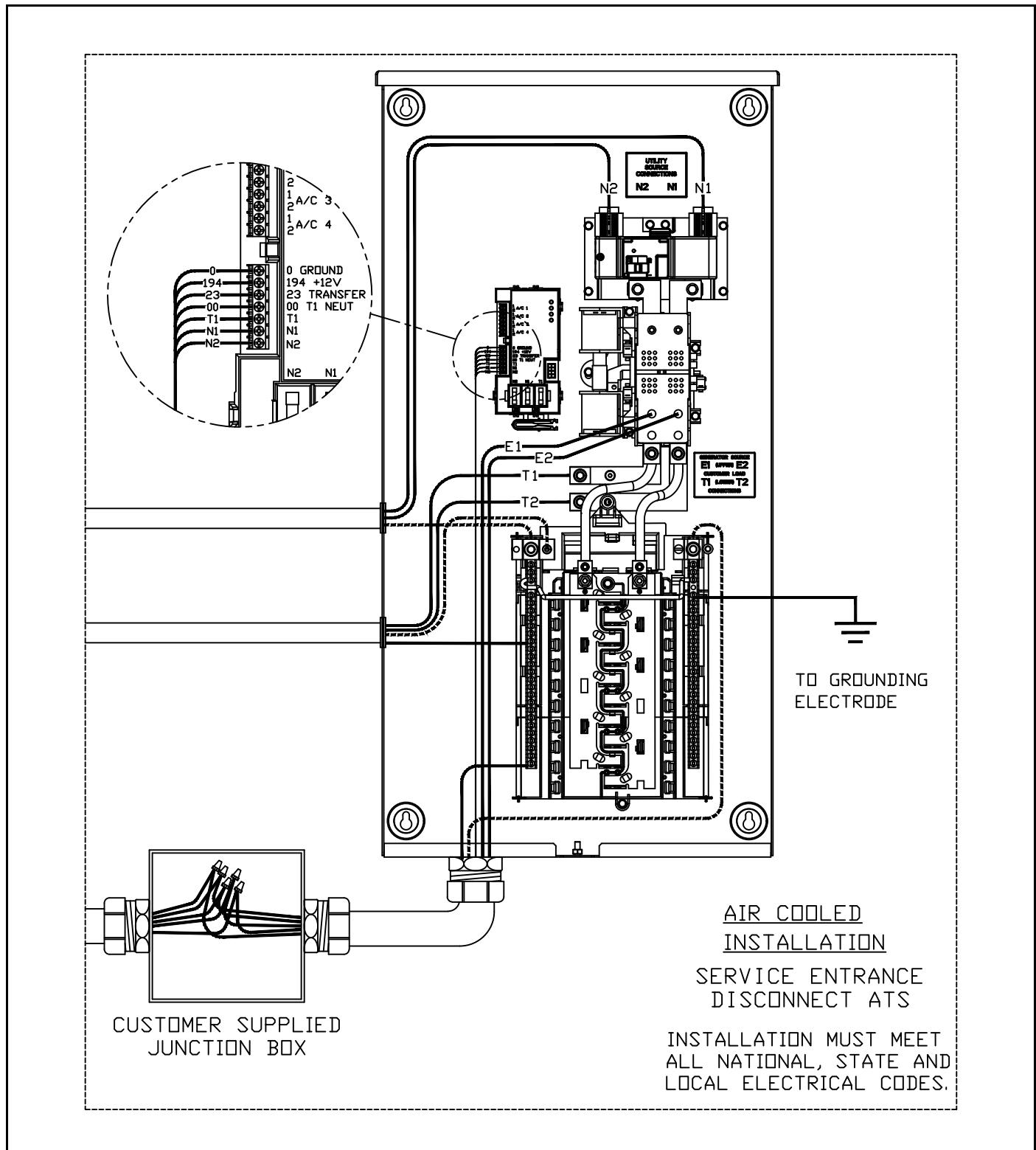

Interconnection Drawing—Liquid-Cooled Engine Generator

No. 10000047283-C (Part 2 of 4)



Interconnection Drawing—Liquid-Cooled Engine Generator

No. 10000047283-C (Part 3 of 4)



GENERATOR CUSTOMER CONNECTION

Interconnection Drawing—Liquid-Cooled Engine Generator

No. 10000047283-C (Part 4 of 4)

Part No. A0000023930 Rev. D 2/8/2024

© 2024 Generac Power Systems, Inc.

All rights reserved.

Specifications are subject to change without notice.

No reproduction allowed in any form without prior written
consent from Generac Power Systems, Inc.

GENERAC®

Generac Power Systems, Inc.

S45 W29290 Hwy. 59

Waukesha, WI 53189

1-888-GENERAC (1-888-436-3722)

www.generac.com